
Building a Blog System using Yii

Qiang Xue

Copyright 2008-2009. All Rights Reserved.

Contents

Contents i

License v

1 Getting Started 1

1.1 Building a Blog System using Yii . 1

1.2 Testdriving with Yii . 1

1.2.1 Installing Yii . 1

1.2.2 Creating Skeleton Application . 2

1.2.3 Application Workflow . 3

1.3 Requirements Analysis . 4

1.4 Overall Design . 4

2 Initial Prototyping 7

2.1 Setting Up Database . 7

2.1.1 Creating Database . 7

2.1.2 Establishing Database Connection 7

2.2 Scaffolding . 8

2.3 Authenticating User . 11

2.4 Summary . 14

3 Post Management 15

ii Contents

3.1 Customizing Post Model . 15

3.1.1 Customizing rules() Method . 15

3.1.2 Customizing safeAttributes() Method 16

3.1.3 Customizing relations() Method 17

3.1.4 Representing Status in Text . 18

3.2 Creating and Updating Posts . 19

3.2.1 Customizing Access Control . 19

3.2.2 Customizing create and update Operations 20

3.2.3 Implementing Preview Feature . 22

3.3 Displaying Posts . 22

3.3.1 Customizing show Operation . 23

3.3.2 Customizing list Operation . 24

3.4 Managing Posts . 25

3.4.1 Listing Posts in Tabular View . 25

3.4.2 Deleting Posts . 26

4 Comment Management 29

4.1 Customizing Comment Model . 29

4.1.1 Customizing rules() Method . 29

4.1.2 Customizing safeAttributes() Method 30

4.1.3 Customizing relations() Method 30

4.1.4 Customizing attributeLabels() Method 30

4.1.5 Customizing Saving Process . 31

4.2 Creating and Displaying Comments . 32

4.2.1 Displaying Comments . 32

Contents iii

4.2.2 Creating Comments . 32

4.3 Managing Comments . 34

4.3.1 Updating and Deleting Comments 34

4.3.2 Approving Comments . 35

5 Porlets 37

5.1 Creating Portlet Architecture . 37

5.1.1 Creating Portlet Class . 37

5.1.2 Customizing Page Layout . 38

5.2 Creating User Menu Portlet . 39

5.2.1 Creating UserMenu Class . 39

5.2.2 Creating userMenu View . 40

5.2.3 Using UserMenu Portlet . 41

5.2.4 Testing UserMenu Portlet . 42

5.2.5 Summary . 42

5.3 Creating Login Portlet . 42

5.3.1 Creating UserLogin Class . 42

5.3.2 Creating userLogin View . 43

5.3.3 Using UserLogin Portlet . 44

5.3.4 Testing UserLogin Portlet . 44

5.3.5 Summary . 45

5.4 Creating Tag Cloud Portlet . 45

5.4.1 Creating TagCloud Class . 45

5.4.2 Creating tagCloud View . 45

5.4.3 Using TagCloud Portlet . 46

iv Contents

5.5 Creating Recent Comments Portlet . 46

5.5.1 Creating RecentComments Class . 46

5.5.2 Creating recentComments View . 47

5.5.3 Using RecentComments Portlet . 47

6 Final Work 49

6.1 Beautifying URLs . 49

6.2 Logging Errors . 50

6.3 Customizing Error Display . 51

6.4 Final Tune-up and Deployment . 51

6.4.1 Changing Home Page . 51

6.4.2 Enabling Schema Caching . 52

6.4.3 Disabling Debugging Mode . 52

6.4.4 Deploying the Application . 53

6.5 Future Enhancements . 53

6.5.1 Using a Theme . 53

6.5.2 Internationalization . 53

6.5.3 Improving Performance with Cache 54

6.5.4 Adding New Features . 54

License of Yii

The Yii framework is free software. It is released under the terms of the following BSD
License.

Copyright c©2008-2009 by Yii Software LLC. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

3. Neither the name of Yii Software LLC nor the names of its contributors may be
used to endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ”AS

IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-

POSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBU-

TORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-

STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUP-

TION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY

WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

vi Contents

Chapter 1

Getting Started

1.1 Building a Blog System using Yii

This tutorial describes how to use Yii to develop a blog application shown as the blog
demo. It explains in detail every step to be taken during the development, which may also
be applied in developing other Web applications. As a complement to the Guide and the
Class Reference of Yii, this tutorial aims to show practical usage of Yii instead of thorough
and definitive description.

Readers of this tutorial are not required to have prior knowledge about Yii. However, basic
knowledge of object-oriented programming (OOP) and database programming would help
readers to understand the tutorial more easily.

This tutorial is released under the Terms of Yii Documentation.

1.2 Testdriving with Yii

In this section, we describe how to create a skeleton application that will serve as our
starting point. For simplicity, we assume that the document root of our Web server is
/wwwroot and the corresponding URL is http://www.example.com/.

1.2.1 Installing Yii

We first install the Yii framework. Grab a copy of the Yii release file (version 1.0.3 or
above) from www.yiiframework.com and unpack it to the directory /wwwroot/yii. Double
check to make sure that there is a directory /wwwroot/yii/framework.

Tip: The Yii framework can be installed anywhere in the file system. Its framework
directory contains all framework code and is the only directory needed when de-
ploying an Yii application. A single installation of Yii can be used by multiple Yii
applications.

http://www.yiiframework.com/demos/blog/
http://www.yiiframework.com/demos/blog/
http://www.yiiframework.com/doc/guide/
http://www.yiiframework.com/doc/api/
http://www.yiiframework.com/doc/api/
http://www.yiiframework.com/doc/terms/
http://www.yiiframework.com/download

2 1. Getting Started

After installing Yii, open a browser window and access the URL http://www.example.com/

yii/requirements/index.php. It shows the requirement checker provided in the Yii release.
Make sure our Web server and PHP installation reaches the minimal requirement by Yii.
In particular, we should enable both the pdo and pdo sqlite PHP extensions which are
required by our blog application to access the SQLite database.

1.2.2 Creating Skeleton Application

We then use the yiic tool to create a skeleton application under the directory /wwwroot/

blog. The yiic tool is a command line tool provided in the Yii release. It can be used to
generate code for certain tasks.

Open a command window and execute the following command:

% /wwwroot/yii/framework/yiic webapp /wwwroot/blog

Create a Web application under ’/wwwroot/blog’? [Yes|No]y

......

Tip: In order to use the yiic tool as shown above, the CLI PHP program must be
on the command search path. If not, the following command may be used instead:

path/to/php /wwwroot/yii/framework/yiic.php webapp /wwwroot/blog

To try out the application we just created, open a Web browser and navigate to the URL
http://www.example.com/blog/index.php. We shall see that our application has three fully
functional pages: the homepage, the contact page and the login page.

In the following, we briefly describe what we have in this skeleton application.

Entry Script

We have an entry script file /wwwroot/blog/index.php which has the following content:

<?php

$yii=’/wwwroot/framework/yii.php’;

$config=dirname(FILE).’/protected/config/main.php’;

// remove the following line when in production mode

defined(’YII DEBUG’) or define(’YII DEBUG’,true);

require once($yii);

Yii::createWebApplication($config)->run();

http://www.yiiframework.com/doc/guide/basics.entry

1.2 Testdriving with Yii 3

This is the only script that Web users can directly access. The script first includes the
Yii bootstrap file yii.php. It then creates an application instance with the specified
configuration and executes the application.

Base Application Directory

We also have an application base directory /wwwroot/blog/protected. The majority of our
code and data will be placed under this directory, and it should be protected from being
accessed by Web users. For Apache httpd Web server, we place under this directory a
.htaccess file with the following content:

deny from all

For other Web servers, please refer to the corresponding manual on how to protect a
directory from being accessed by Web users.

1.2.3 Application Workflow

To help understand how Yii works, we describe the main workflow in our skeleton appli-
cation when a user is accessing its contact page:

1. The entry script is executed by the Web server to process the request;

2. An application instance is created and configured with initial property values speci-
fied in the application configuration file /wwwroot/blog/protected/config/main.php;

3. The application resolves the request into a controller and a controller action. For
the contact page request, it is resolved as the site controller and the contact action;

4. The application creates the site controller in terms of a SiteController instance
and then executes it;

5. The SiteController instance executes the contact action by calling its actionContact()
method;

6. The actionContact method renders a view named contact to the Web user. Inter-
nally, this is achieved by including the view file /wwwroot/blog/protected/views/

site/contact.php and embedding the result into the layout file /wwwroot/blog/

protected/views/layouts/main.php.

http://www.yiiframework.com/doc/guide/basics.application
http://www.yiiframework.com/doc/guide/basics.application#application-base-directory
http://httpd.apache.org/
http://www.yiiframework.com/doc/guide/basics.entry
http://www.yiiframework.com/doc/guide/basics.application
http://www.yiiframework.com/doc/guide/basics.controller
http://www.yiiframework.com/doc/guide/basics.controller#action
http://www.yiiframework.com/doc/guide/basics.view
http://www.yiiframework.com/doc/guide/basics.view#layout

4 1. Getting Started

1.3 Requirements Analysis

The blog system that we are going to develop is a single user system. The owner of the
system will be able to perform the following actions:

• Login and logout

• Create, update and delete posts

• Publish, unpublish and archive posts

• Approve and delete comments

All other users are guest users who can perform the following actions:

• Read posts

• Create comments

Additional Requirements for this system include:

• The homepage of the system should display a list of the most recent posts.

• If a page contains more than 10 posts, they should be displayed in pages.

• The system should display a post together with its comments.

• The system should be able to list posts with a specified tag.

• The system should show a cloud of tags indicating their use frequencies.

• The system should show a list of most recent comments.

• The system should be themeable.

• The system should use SEO-friendly URLs.

1.4 Overall Design

Based on the analysis of the requirements, we identify that our blog application requires
four database tables to store data: User, Post, Comment and Tag:

• User stores the user information, including username and password.

1.4 Overall Design 5

• Post stores post information. It mainly consists of the following columns:

– title: required, title of the post;

– content: required, body content of the post which uses the Markdown format;

– status: required, status of the post, which can be one of following values:

∗ draft: the post is in draft and is not visible to public;

∗ published: the post is published to public;

∗ archived: the post is outdated and is not visible to public.

– tags: optional, a list of comma-separated words categorizing the post.

• Comment stores post comment information. Each comment is associated with a post
and mainly consists of the following columns:

– name: required, the author name;

– email: required, the author email;

– website: optional, the author website URL;

– content: required, the comment content which uses the Markdown format.

– status: required, status of the comment, which indicates whether the comment
is approved (value 1) or not (value 0).

• Tag stores post tag information. Each post can have multiple tags, while each tag
can also be attached to multiple posts. The Tag table is mainly used by the tag
cloud portlet which needs to calculate the use frequency of each tag.

The following entity-relation (ER) diagram shows the table structure and relationships
about the above tables. Note that the relationship between Post and Tag is many-to-many,
we use the PostTag table to decouple this relationship into two one-to-many relationships.

Complete SQL statements corresponding to the above ER diagram may be found in
the blog demo. In our Yii installation, they are in the file /wwwroot/yii/demos/blog/

protected/data/schema.sqlite.sql.

We divide the development of our blog application into the following milestones.

• Milestone 1: creating a prototype of the blog system. It should consist of most of
the required functionalities.

• Milestone 2: completing post management. It includes creating, listing, showing,
updating and deleting posts.

http://daringfireball.net/projects/markdown/syntax
http://daringfireball.net/projects/markdown/syntax
http://www.yiiframework.com/demos/blog/

6 1. Getting Started

Figure 1.1: Entity-Relation Diagram of the Blog Database

• Milestone 3: completing comment management. It includes creating, listing, ap-
proving, updating and deleting post comments.

• Milestone 4: implementing portlets. It includes user menu, login, tag cloud and
recent comments portlets.

• Milestone 5: final tune-up and deployment.

Chapter 2

Initial Prototyping

2.1 Setting Up Database

Having created a skeleton application and finished database design, in this section we will
create the blog database and establish the connection to it in the skeleton application.

2.1.1 Creating Database

We choose to create a SQLite database. Because the database support in Yii is built on top
of PDO, we can easily switch to use a different type of DBMS (e.g. MySQL, PostgreSQL)
without the need to change our application code.

We create the database file blog.db under the directory /wwwroot/blog/protected/data.
Note that both the directory and the database file have to be writable by the Web server
process, as required by SQLite. We may simply copy the database file from the blog
demo in our Yii installation which is located at /wwwroot/yii/demos/blog/protected/data/
blog.db. We may also generate the database by executing the SQL statements in the file
/wwwroot/yii/demos/blog/protected/data/schema.sqlite.sql.

Tip: To execute SQL statements, we may use the sqlite3 command line tool that
can be found in the SQLite official website.

2.1.2 Establishing Database Connection

To use the blog database in the skeleton application we created, we need to modify its ap-
plication configuration which is stored as a PHP script /wwwroot/blog/protected/config/

main.php. The script returns an associative array consisting of name-value pairs, each of
which is used to initialize a property of the application instance.

We configure the components property of the application by adding a new entry named db

shown as follows,

http://www.php.net/manual/en/book.pdo.php
http://www.sqlite.org/download.html
http://www.yiiframework.com/doc/guide/basics.application#application-configuration
http://www.yiiframework.com/doc/guide/basics.application#application-configuration
http://www.yiiframework.com/doc/guide/basics.application

8 2. Initial Prototyping

return array(

......

’components’=>array(

......

’db’=>array(

’class’=>’CDbConnection’,

’connectionString’=>’sqlite:/wwwroot/blog/protected/data/blog.db’,

),

),

......

);

The above configuration says that we have a db application component whose class is
CDbConnection and whose connectionString property should be initialized as sqlite:/

wwwroot/blog/protected/data/blog.db.

With this configuration, we can access the DB connection object using Yii::app()->db

at any place in our code. Note that Yii::app() returns the application instance that we
create in the entry script. If you are interested in possible methods and properties that the
DB connection has, you may refer to its class reference. However, in most cases we are not
going to use this DB connection directly. Instead, we will use the so-called ActiveRecord
to access the database.

2.2 Scaffolding

Create, read, update and delete (CRUD) are the four basic operations of persistent storage.
In our blog application, the major task is to implement the CRUD operations for both
posts and comments. In this section, we will use the yiic tool to accomplish this task.
This process is also known as scaffolding.

Open a command window and run the following commands:

% /wwwroot/yii/framework/yiic shell /wwwroot/blog/index.php

Yii Interactive Tool v1.0

Please type ’help’ for help. Type ’exit’ to quit.

>> model User

......

>> model Post

......

>> model Tag

......

>> model Comment

......

>> crud Post

http://www.yiiframework.com/doc/guide/basics.application#application-component
http://yiiframework.com/doc/api/CDbConnection
http://yiiframework.com/doc/api/CDbConnection
http://www.yiiframework.com/doc/guide/database.ar

2.2 Scaffolding 9

......

>> crud Comment

......

>> exit

Info: Some PHP installations may use a different php.ini file for command line
(CLI) PHP parser. As a result, when running the above yiic commands, you
may encounter errors like ”YiiBase::include(PDO.php): failed to open stream...”
or ”...could not find driver”. Please double check your CLI PHP configuration by
executing the following command:

php -r "phpinfo();"

The result of the above command will show which php.ini file is being used and
which extensions are loaded. If a wrong php.ini file is used, you may use the
following command to explicitly specify the correct php.ini to use:

php -c php.ini /wwwroot/yii/framework/yiic.php shell /wwwroot/blog/index.php

The commands above accomplish two tasks. First, the model commands generate a model
class file for each database table. Second, the crud commands generate the code needed
by the CRUD operations for the Post and Comment models.

We can test the generated code by accessing the following URLs:

http://www.example.com/blog/index.php?r=post

http://www.example.com/blog/index.php?r=comment

Notice that the post and comment features implemented by the generated code are com-
pletely independent of each other. Also, when creating a new post or comment, we are
required to enter information, such as authId and createTime, which in real application
should be set by the program. Don’t worry. We will fix these problems in the next mile-
stones. For now, we should be fairly satisfied as this prototype already contains most
features that we need to implement for the blog application.

To prepare for the next milestones, let’s take a closer look at the files generated by the
above commands. All the files are generated under /wwwroot/blog/protected. For conve-
nience, we group them into model files, controller files and view files:

• model files:

http://www.yiiframework.com/doc/guide/basics.model
http://www.yiiframework.com/doc/guide/basics.model
http://www.yiiframework.com/doc/guide/basics.controller
http://www.yiiframework.com/doc/guide/basics.view

10 2. Initial Prototyping

– models/User.php contains the user class that extends from CActiveRecord and
can be used to access the User database table;

– models/Post.php contains the Post class that extends from CActiveRecord and
can be used to access the Post database table;

– models/Tag.php contains the Tag class that extends from CActiveRecord and
can be used to access the Tag database table;

– models/Comment.php contains the Comment class that extends from CActiveRe-
cord and can be used to access the Comment database table;

• controller file:

– controllers/PostController.php contains the PostController class which is the
controller in charge of all CRUD operations about posts;

– controllers/CommentController.php contains the CommentController class which
is the controller in charge of all CRUD operations about comments;

• view files:

– views/post/create.php is the view file that shows an HTML form to create a
new post;

– views/post/update.php is the view file that shows an HTML form to update an
existing post;

– views/post/show.php is the view file that displays the detailed information of a
post;

– views/post/list.php is the view file that displays a list of posts;

– views/post/admin.php is the view file that displays posts in a table with ad-
ministrative commands.

– views/post/ form.php is the partial view file that displays the HTML form for
collecting post information. It is embedded in the create and update views.

– a similar set of view files are also generated for comment.

In order to understand better how the above files are used, we show in the following the
workflow that occurs in the blog application when displaying a list of posts:

1. The entry script is executed by the Web server which creates and initializes an
application instance to handle the request;

2. The application creates an instance of PostController and executes it;

http://yiiframework.com/doc/api/CActiveRecord
http://yiiframework.com/doc/api/CActiveRecord
http://yiiframework.com/doc/api/CActiveRecord
http://yiiframework.com/doc/api/CActiveRecord
http://yiiframework.com/doc/api/CActiveRecord
http://www.yiiframework.com/doc/guide/basics.entry
http://www.yiiframework.com/doc/guide/basics.application

2.3 Authenticating User 11

3. The PostController instance executes the requested list action by calling its actionList()
method;

4. The actionList() method queries database to bring back the list of recent posts;

5. The actionList() method renders the list view with the post data.

2.3 Authenticating User

Our blog application needs to differentiate between the system owner and guest users.
Therefore, we need to implement the user authentication feature.

As you may have found that the skeleton application already provides user authentication
by checking if the username and password are both demo or admin. In this section, we
will modify the corresponding code so that the authentication is done against the User

database table.

User authentication is performed in a class implementing the IUserIdentity interface. The
skeleton application uses the UserIdentity class for this purpose. The class is stored in
the file /wwwroot/blog/protected/components/UserIdentity.php.

Tip: By convention, the name of a class file must be the same as the corresponding
class name suffixed with the extension .php. Following this convention, one can
refer to a class using a path alias. For example, we can refer to the UserIdentity

class with the alias application.components.UserIdentity. Many APIs in Yii
can recognize path aliases (e.g. Yii::createComponent()), and using path aliases
avoids the necessity of embedding absolute file paths in the code. The existence of
the latter often causes trouble when we deploy an application.

We modify the UserIdentity class as follows,

<?php

class UserIdentity extends CUserIdentity

{
private $ id;

public function authenticate()

{
$username=strtolower($this->username);

$user=User::model()->find(’LOWER(username)=?’,array($username));

if($user===null)

$this->errorCode=self::ERROR USERNAME INVALID;

else if(md5($this->password)!==$user->password)

http://www.yiiframework.com/doc/guide/topics.auth
http://yiiframework.com/doc/api/IUserIdentity
http://www.yiiframework.com/doc/guide/basics.namespace
http://yiiframework.com/doc/api/YiiBase#createComponent

12 2. Initial Prototyping

$this->errorCode=self::ERROR PASSWORD INVALID;

else

{
$this-> id=$user->id;

$this->username=$user->username;

$this->errorCode=self::ERROR NONE;

}
return !$this->errorCode;

}

public function getId()

{
return $this-> id;

}
}

In the authenticate() method, we use the User class to look for a row in the User table
whose username column is the same as the given username in a case-insensitive manner.
Remember that the User class was created using the yiic tool in the prior section. Because
the User class extends from CActiveRecord, we can exploit the ActiveRecord feature and
access the User table in an OOP fashion.

In the UserIdentity class, we also override the getId() method which returns the id value
of the user found in the User table. The parent implementation would return the username,
instead. Both the username and id properties will be stored in the user session and may
be accessed via Yii::app()->user from anywhere in our code.

http://yiiframework.com/doc/api/CActiveRecord
http://www.yiiframework.com/doc/guide/database.ar

2.3 Authenticating User 13

Tip: In the UserIdentity class, we reference the class CUserIdentity without ex-
plicitly including the corresponding class file. This is because CUserIdentity is a
core class provided by the Yii framework. Yii will automatically include the class
file for any core class when it is referenced for the first time. We also do the same
with the User class. This is because the User class file is placed under the directory
/wwwroot/blog/protected/models which has been added to the PHP include

path according to the following lines found in the application configuration:

return array(

......

’import’=>array(

’application.models.*’,

’application.components.*’,

),

......

);

The above configuration says that any class whose class file is located under either /
wwwroot/blog/protected/models or /wwwroot/blog/protected/components will
be automatically included when the class is referenced for the first time.

The UserIdentity class is mainly used by the LoginForm class to authenticate a user based
on the username and password input collected from the login page. The following code
fragment shows how UserIdentity is used:

$identity=new UserIdentity($username,$password);

$identity->authenticate();

switch($identity->errorCode)

{
case UserIdentity::ERROR NONE:

Yii::app()->user->login($identity);

break;

......

}

Info: People often get confused about identity and the user application component.
The former represents a way of performing authentication, while the latter is used
to represent the information related with the current user. An application can only
have one user component, but it can have one or several identity classes, depending
on what kind of authentication it supports. Once authenticated, an identity instance
may pass its state information to the user component so that they are globally
accessible via user.

http://yiiframework.com/doc/api/CUserIdentity
http://yiiframework.com/doc/api/CUserIdentity

14 2. Initial Prototyping

To test the modified UserIdentity class, we can browse the URL http://www.example.com/

blog/index.php and try logging in with the username and password that we store in the
User table. If we use the database provided by the blog demo(http://www.yiiframework.com/demos/blog/],
we should be able to login with username demo and password demo. Note that this blog
system does not provide the user management feature. As a result, a user cannot change
his account or create a new one through the Web interface. The user management feature
may be considered as a future enhancement to the blog application.

2.4 Summary

We have completed the milestone 1. Let’s summarize what we have done so far:

1. We identified the requirements to be fulfilled;

2. We installed the Yii framework;

3. We created a skeleton application;

4. We designed and created the blog database;

5. We modified the application configuration by adding the database connection;

6. We generated the code that implements the basic CRUD operations for both posts
and comments;

7. We modified the authentication method to check against the User table.

For a new project, most of the time will be spent in step 1 and 4 for this first milestone.

Although the code generated by the yiic tool implements fully functional CRUD oper-
ations for a database table, it often needs to be modified in practical applications. For
this reason, in the next two milestone, our job is to customize the generated CRUD code
about posts and comments so that it reaches our initial requirements.

In general, we first modify the model class file by adding appropriate validation rules and
declaring relational objects. We then modify the controller action and view code for each
individual CRUD operation.

http://yiiframework.com/doc/api/blog demo
http://www.yiiframework.com/doc/guide/basics.model
http://www.yiiframework.com/doc/guide/form.model#declaring-validation-rules
http://www.yiiframework.com/doc/guide/database.arr#declaring-relationship
http://www.yiiframework.com/doc/guide/basics.controller
http://www.yiiframework.com/doc/guide/basics.view

Chapter 3

Post Management

3.1 Customizing Post Model

The Post model class generated by the yiic tool mainly needs to be modified in three
places:

• the rules() method: specifies the validation rules for the model attributes;

• the relations() method: specifies the related objects;

• the safeAttributes() method: specifies which attributes can be massived assigned
(mainly used when passing user input to the model);

Info: A model consists of a list of attributes, each associated with a column in the
corresponding database table. Attributes can be declared explicitly as class member
variables or implicitly without any declaration.

3.1.1 Customizing rules() Method

We first specify the validation rules which ensure the attribute values populated by user
inputs are correct before they are saved to the database. For example, the status attribute
of Post should be an integer 0, 1 or 2. The yiic tool also generates validation rules for
each model. However, these rules are based on the table column information and may not
be appropriate.

Based on the requirements analysis, we modify the rules() method as follows:

public function rules()

{
return array(

http://www.yiiframework.com/doc/guide/basics.model

16 3. Post Management

array(’title, content, status’, ’required’),

array(’title’, ’length’, ’max’=>128),

array(’status’, ’in’, ’range’=>array(0, 1, 2)),

array(’tags’, ’match’, ’pattern’=>’/^[\w\s,]+$/’,
’message’=>’Tags can only contain word characters.’),

);

}

In the above, we specify that the title, length and max attributes are required; the
length of title should not exceed 128; the status attribute value should be 0 (draft), 1
(published) or 2 (archived); and the tags attribute should only contain word characters
and commas. All other attributes (e.g. id, createTime) will not be validated because their
values do not come from user input.

After making these changes, we can visit the post creation page again to verify that the
new validation rules are taking effect.

Info: Validation rules are used when we call the validate() or save() method of the
model instance. For more information about how to specify validation rules, please
refer to the Guide.

3.1.2 Customizing safeAttributes() Method

We then customize the safeAttributes() method to specify which attributes can be mas-
sively assigned. When passing user inputs to the model instance, we often use the following
massive assignment to simplify our code:

$post->attributes=$ POST[’Post’];

Without using the above massive assignment, we would end up with the following lengthy
code:

$post->title=$ POST[’Post’][’title’];

$post->content=$ POST[’Post’][’content’];

......

Although massive assignment is very convenient, it has a potential danger that a malicious
user may attempt to populate an attribute whose value should remain read only or should
only be changed by developer in code. For example, the id of the post currently being
updated should not be changed.

http://yiiframework.com/doc/api/CModel#validate
http://yiiframework.com/doc/api/CActiveRecord#save
http://www.yiiframework.com/doc/guide/form.model#declaring-validation-rules

3.1 Customizing Post Model 17

To prevent from such danger, we should customize the safeAttributes() as follows, which
states only title, content, status and tags attributes can be massively assigned:

public function safeAttributes()

{
return array(’title’, ’content’, ’status’, ’tags’);

}

Tip: An easy way to identity which attributes should be put in the safe list is
by observing the HTML form that is used to collect user input. Model attributes
that appear in the form to receive user input may be declared as safe. Since these
attributes receive input from end users, they usually should be associated with some
validation rules.

3.1.3 Customizing relations() Method

Lastly we customize the relations() method to specify the related objects of a post. By
declaring these related objects in relations(), we can exploit the powerful Relational
ActiveRecord (RAR) feature to access the related object information of a post, such as
its author and comments, without the need to write complex SQL JOIN statements.

We customize the relations() method as follows:

public function relations()

{
return array(

’author’=>array(self::BELONGS TO, ’User’, ’authorId’),

’comments’=>array(self::HAS MANY, ’Comment’, ’postId’,

’order’=>’??.createTime’),

’tagFilter’=>array(self::MANY MANY, ’Tag’, ’PostTag(postId, tagId)’,

’together’=>true,

’joinType’=>’INNER JOIN’,

’condition’=>’??.name=:tag’),

);

}

The above relations state that

• A post belongs to an author whose class is User and the relationship is established
based on the authorId attribute value of the post;

http://www.yiiframework.com/doc/guide/database.arr
http://www.yiiframework.com/doc/guide/database.arr

18 3. Post Management

• A post has many comments whose class is Comment and the relationship is established
based on the postId attribute value of the comments. These comments should be
sorted according to their creation time.

The tagFilter relation is a bit complex. It is used to explicitly join the Post table with
the Tag table and choose only the rows with a specified tag name. We will show how to
use this relation when we implement the post display feature.

With the above relation declaration, we can easily access the author and comments of a
post like the following:

$author=$post->author;

echo $author->username;

$comments=$post->comments;

foreach($comments as $comment)

echo $comment->content;

For more details about how to declare and use relations, please refer to the Guide.

3.1.4 Representing Status in Text

Because the status of a post is stored as an integer in the database, we need to provide
a text representation so that it is more intuitive when being displayed to end users. For
this reason, we modify the Post model as follows,

class Post extends CActiveRecord

{
const STATUS DRAFT=0;

const STATUS PUBLISHED=1;

const STATUS ARCHIVED=2;

......

public function getStatusOptions()

{
return array(

self::STATUS DRAFT=>’Draft’,

self::STATUS PUBLISHED=>’Published’,

self::STATUS ARCHIVED=>’Archived’,

);

}

public function getStatusText()

http://www.yiiframework.com/doc/guide/database.arr

3.2 Creating and Updating Posts 19

{
$options=$this->statusOptions;

return isset($options[$this->status]) ? $options[$this->status]

: "unknown ({$this->status})";
}

}

In the above, we define class constants to represent the possible status values. These
constants are mainly used in the code to make it more maintainable. We also define the
getStatusOptions() method which returns a mapping between status integer values and
text display. And finally, we define the getStatusText() method which simply returns the
textual status display of the current post.

3.2 Creating and Updating Posts

With the Post model ready, we need to fine-tune the actions and views for the controller
PostController. In this section, we first customize the access control of CRUD operations;
we then modify the code implementing the create and update operations; and finally we
implement the preview feature for both operations.

3.2.1 Customizing Access Control

The first thing we want to do is to customize the access control because the code generated
by yiic does not fit our needs.

We modify the accessRules() method in the file /wwwroot/blog/protected/controllers/

PostController.php as follows,

public function accessRules()

{
return array(

array(’allow’, // allow all users to perform ’list’ and ’show’ actions

’actions’=>array(’list’, ’show’),

’users’=>array(’*’),

),

array(’allow’, // allow authenticated users to perform any action

’users’=>array(’@’),

),

array(’deny’, // deny all users

’users’=>array(’*’),

),

);

}

http://www.yiiframework.com/doc/guide/topics.auth#access-control-filter

20 3. Post Management

The above rules state that all users can access the list and show actions, and authenticated
users can access any actions, including the admin action. The user should be denied access
in any other scenario. Note that these rules are evaluated in the order they are listed here.
The first rule matching the current context makes the access decision. For example, if the
current user is the system owner who tries to visit the post creation page, the second rule
will match and it will give the access to the user.

3.2.2 Customizing create and update Operations

The create and update operations are very similar. They both need to display an HTML
form to collect user inputs, validate them, and save them into database. The main differ-
ence is that the update operation will pre-populate the form with the existing post data
found in the database. For this reason, the yiic tool generates a partial view /wwwroot/

blog/protected/views/post/ form.php that is embedded in both the create and update

views to render the needed HTML form.

We first change the form.php file so that the HTML form only collects the inputs we
want: title, content and status. We use plain text fields to collect inputs for the first
two attributes, and a dropdown list to collect input for status. The dropdown list options
are the text displays of the possible post statuses:

<?php echo CHtml::activeDropDownList($post,’status’,Post::model()->statusOptions); ?>

Tip: In the above, we can also use Post::model()->getStatusOptions() instead
of Post::model()->statusOptions to return the possible status options. The rea-
son that we can use the latter expression is because Post is a component which
allows us to access properties defined in terms of getter methods.

We then modify the Post class so that it can automatically set some attributes (e.g.
createTime, authorId) before a post is saved to the database. We override the beforeValidate()
method as follows,

protected function beforeValidate($on)

{
$parser=new CMarkdownParser;

$this->contentDisplay=$parser->safeTransform($this->content);

if($this->isNewRecord)

{
$this->createTime=$this->updateTime=time();

$this->authorId=Yii::app()->user->id;

http://www.yiiframework.com/doc/guide/basics.component#component-property

3.2 Creating and Updating Posts 21

}
else

$this->updateTime=time();

return true;

}

In this method, we use CMarkdownParser to convert the content from Markdown format
into HTML and save the result to contentDisplay. This avoids repeated format conversion
when we display a post. If the post is new, we set its createTime and authorId attributes;
otherwise we set its updateTime to be the current time. Note that this method will be
invoked automatically when we call validate() or save() method of the model.

Because we want to save post tags to the Tag table, we also need the following method in
the Post class, which is invoked automatically after a post is saved to the database:

protected function afterSave()

{
if(!$this->isNewRecord)

$this->dbConnection->createCommand(

’DELETE FROM PostTag WHERE postId=’.$this->id)->execute();

foreach($this->getTagArray() as $name)

{
if(($tag=Tag::model()->findByAttributes(array(’name’=>$name)))===null)

{
$tag=new Tag(array(’name’=>$name));

$tag->save();

}
$this->dbConnection->createCommand(

"INSERT INTO PostTag (postId, tagId) VALUES ({$this->id},{$tag->id})")->execute();
}

}

In the above, we first clean up the PostTag table for rows related with the current post.
We then insert new tags into the Tag table and add a reference in the PostTag table. The
logic here is a bit complex. Instead of using ActiveRecord, we write raw SQL statements
and execute them with the database connection.

Tip: It is good practice to keep business logic, such as the above beforeValidate()
and afterSave() code, in models instead of controllers.

http://yiiframework.com/doc/api/CMarkdownParser
http://daringfireball.net/projects/markdown/
http://www.yiiframework.com/doc/guide/database.ar

22 3. Post Management

3.2.3 Implementing Preview Feature

Besides the above customizations, we also want to add the preview feature that would
allow us to preview a post before we save it to the database.

We first change the form.php view file to add a preview button and a preview display. The
preview is only displayed when the preview button is clicked and there is not validation
error.

<?php echo CHtml::submitButton(’Preview’,array(’name’=>’previewPost’)); ?>

......

<?php if(isset($ POST[’previewPost’]) && !$post->hasErrors()): ?>

...display preview of $post here...

<?php endif; ?>

We then change the actionCreate() and actionUpdate() methods of PostController to
respond to the preview request. Below we show the updated code of actionCreate(),
which is very similar to that in actionUpdate():

public function actionCreate()

{
$post=new Post;

if(isset($ POST[’Post’]))

{
$post->attributes=$ POST[’Post’];

if(isset($ POST[’previewPost’]))

$post->validate();

else if(isset($ POST[’submitPost’]) && $post->save())

$this->redirect(array(’show’,’id’=>$post->id));

}
$this->render(’create’,array(’post’=>$post));

}

In the above, if the preview button is clicked, we call $post->validate() to validate the
user input; otherwise if the submit button is clicked, we try to save the post by calling
$post->save() which implicitly performs validation. If the saving is successful (no vali-
dation errors and the data is saved to the database without error), we redirect the user
browser to show the newly created post.

3.3 Displaying Posts

In our blog application, a post may be displayed among a list of posts or by itself. The
former is implemented as the list operation while the latter the show operation. In this
section, we customize both operations to fulfill our initial requirements.

3.3 Displaying Posts 23

3.3.1 Customizing show Operation

The show operation is implemented by the actionShow() method in PostController. Its
display is generated by the show view with the view file /wwwroot/blog/protected/views/

post/show.php.

Below is the relevant code implementing the show operation in PostController:

public function actionShow()

{
$this->render(’show’,array(

’post’=>$this->loadPost(),

));

}

private $ post;

protected function loadPost($id=null)

{
if($this-> post===null)

{
if($id!==null || isset($ GET[’id’]))

$this-> post=Post::model()->findbyPk($id!==null ? $id : $ GET[’id’]);

if($this-> post===null || Yii::app()->user->isGuest &&

$this-> post->status!=Post::STATUS PUBLISHED)

throw new CHttpException(500,’The requested post does not exist.’);

}
return $this-> post;

}

Our change mainly lies in the loadPost() method. In this method, we query the Post

table according to the id GET parameter. If the post is not found or if it is not published
(when the user is a guest), we will throw a 500 HTTP error. Otherwise the post object is
returned to actionShow() which in turn passes the post object to the show view for further
display.

Tip: Yii captures HTTP exceptions (instances of CHttpException) and displays
them in error pages using some predefined templates. These templates can be cus-
tomized per application, which we will describe in detail at the end of this tutorial.

The change in the show view is mainly about ajdusting the formatting and styles of the
post display. We will not go into details here.

http://yiiframework.com/doc/api/CHttpException

24 3. Post Management

3.3.2 Customizing list Operation

Like the show operation, we customize the list operation in two places: the actionList()

method in PostController and the view file /wwwroot/blog/protected/views/post/list.

php. We mainly need to add the support for displaying a list of posts that are associated
with a specified tag.

Below is the modified actionList() method in PostController:

public function actionList()

{
$criteria=new CDbCriteria;

$criteria->condition=’status=’.Post::STATUS PUBLISHED;

$criteria->order=’createTime DESC’;

$withOption=array(’author’);

if(!empty($ GET[’tag’]))

{
$withOption[’tagFilter’][’params’][’:tag’]=$ GET[’tag’];

$postCount=Post::model()->with($withOption)->count($criteria);

}
else

$postCount=Post::model()->count($criteria);

$pages=new CPagination($postCount);

$pages->applyLimit($criteria);

$posts=Post::model()->with($withOption)->findAll($criteria);

$this->render(’list’,array(

’posts’=>$posts,

’pages’=>$pages,

));

}

In the above, we first create a query criteria which specifies only published posts should
be listed and they should be sorted according to their creation time in descending order.
We then compute the total number of posts satisfying the criteria. The number is used
by the pagination component to correctly compute how many pages the posts should be
displayed in. Finally, we retrieve the post data from the database and send them to the
list view for display.

Notice that when there is tag GET parameter, we would query with the tagFilter using
the corresponding GET parameter value. Including tagFilter in the relational query
will ensure that only a single SQL JOIN statement is used to retrieve the posts with

3.4 Managing Posts 25

the specified tag. Without this call, Yii would break the query into two separate SQL
statements (for efficiency concern) and would return incorrect results.

Two variables are passed to the list view: $posts and $pages. The former refers to the
list of posts be displayed, while the latter contains pagination information (e.g. how many
pages in total, what is the current page). The list view contains a pagination widget that
can automatically display posts in separate pages if there are too many of them.

3.4 Managing Posts

Managing posts mainly refers to listing posts in an administrative view and deleting posts.
They are accomplished by the admin operation and the delete operation, respectively. The
code generated by yiic does not need much modification. Below we mainly explain how
these two operations are implemented.

3.4.1 Listing Posts in Tabular View

The admin operation shows all posts (including both published and unpublished) in a
tabular view. The view supports multi-column sorting and pagination. The following is
the actionAdmin() method in PostController:

public function actionAdmin()

{
$criteria=new CDbCriteria;

$pages=new CPagination(Post::model()->count());

$pages->applyLimit($criteria);

$sort=new CSort(’Post’);

$sort->defaultOrder=’status ASC, createTime DESC’;

$sort->applyOrder($criteria);

$posts=Post::model()->findAll($criteria);

$this->render(’admin’,array(

’posts’=>$posts,

’pages’=>$pages,

’sort’=>$sort,

));

}

The above code is very similar to that in actionList(). The main difference is that here
we use a CSort object to represent the sorting informatin (e.g. which columns are being
sorted in which directions). The CSort object is used by the admin view to generate

http://www.yiiframework.com/doc/guide/basics.view#widget
http://yiiframework.com/doc/api/CSort
http://yiiframework.com/doc/api/CSort

26 3. Post Management

appropriate hyperlinks in the table head cells. Clicking on a link would cause the current
page to be refreshed and the data to be sorted along that column.

Below is the code for the admin view:

<h2>Manage Posts</h2>

<table class="dataGrid">

<tr>

<th><?php echo $sort->link(’status’); ?></th>

<th><?php echo $sort->link(’title’); ?></th>

<th><?php echo $sort->link(’createTime’); ?></th>

<th><?php echo $sort->link(’updateTime’); ?></th>

</tr>

<?php foreach($posts as $n=>$post): ?>

<tr class="<?php echo $n%2?’even’:’odd’;?>">

<td><?php echo CHtml::encode($post->statusText); ?></td>

<td><?php echo CHtml::link(CHtml::encode($post->title),

array(’show’,’id’=>$post->id)); ?></td>

<td><?php echo date(’F j, Y’,$post->createTime); ?></td>

<td><?php echo date(’F j, Y’,$post->updateTime); ?></td>

</tr>

<?php endforeach; ?>

</table>

<?php $this->widget(’CLinkPager’,array(’pages’=>$pages)); ?>

The code is very straight-forward. We iterate through the list of posts and display them in
a table. In the head cells of the table, we use the CSort object to generate the hyperlinks
for sorting purpose. And at the end, we embed a CLinkPager widget to display pagination
buttons if needed.

Tip: When displaying text, we call CHtml::encode() to encode HTML entities in
it. This prevents from cross-site scripting attack.

3.4.2 Deleting Posts

When a post is displayed using the show operation, we display a delete link if the current
user is the system owner. Clicking on this button would cause the deletion of the post.
Since the post deletion is causing the change of the server-side data, we use a POST
request to trigger the deletion. We thus use the following code to generate the delete

button:

http://yiiframework.com/doc/api/CSort
http://yiiframework.com/doc/api/CLinkPager
http://yiiframework.com/doc/api/CHtml#encode
http://www.yiiframework.com/doc/guide/topics.security

3.4 Managing Posts 27

<?php echo CHtml::linkButton(’Delete’,array(

’submit’=>array(’post/delete’,’id’=>$post->id),

’confirm’=>"Are you sure to delete this post?",

)); ?>

The CHtml::linkButton() method generates a link button that is like the normal push
button. Clicking on the link would cause the submission of the enclosing HTML form
in POST method. Here we specify that the form should be submitted to the URL gen-
erated according to array(’post/delete’,’id’=>$post->id). In our blog application, the
generated URL would be /blog/index.php?r=post/delete&id=1, which refers to the delete

action of PostController. We also specify that a confirmation dialog should pop up when
clicking on this link. This gives the user a chance to re-consider his deletion request.

The code for the delete operation is self-explanatory. We are not going to explain here.

public function actionDelete()

{
if(Yii::app()->request->isPostRequest)

{
// we only allow deletion via POST request

$this->loadPost()->delete();

$this->redirect(array(’list’));

}
else

throw new CHttpException(500,’Invalid request...’);

}

http://yiiframework.com/doc/api/CHtml#linkButton

28 3. Post Management

Chapter 4

Comment Management

4.1 Customizing Comment Model

Like the Post model, we need to customize the rules(), relations() and safeAttributes()

methods of the Comment model. In addition, we also need to modify the attributeLabels()

to declare the customized labels for some attributes.

4.1.1 Customizing rules() Method

We first customize the validation rules generated by the yiic tool. The following rules are
used for comments:

public function rules()

{
return array(

array(’author,email,content’, ’required’),

array(’author,email,url’,’length’,’max’=>128),

array(’email’,’email’),

array(’url’,’url’),

array(’verifyCode’, ’captcha’, ’on’=>’insert’,

’allowEmpty’=>!Yii::app()->user->isGuest),

);

}

In the above, we specify that the author, email and content attributes are required; the
length of author, email and url cannot exceed 128; the email attribute must be a valid
email address; the url attribute must be a valid URL; and the verifyCode attribute should
be validated as a CAPTCHA code.

The verifyCode attribute in the above is mainly used to store the verification code that
a user enters in order to leave a comment. Because it is not present in the Comment table,
we need to explicitly declare it as a public member variable. Its validation is using a
special validator named captcha which refers to the CCaptchaValidator class. Moreover,

http://en.wikipedia.org/wiki/Captcha
http://yiiframework.com/doc/api/CCaptchaValidator

30 4. Comment Management

the validation will only be performed when a new comment is being inserted (see the on

option). And for authenticated users, this is not needed (see the allowEmpty option).

4.1.2 Customizing safeAttributes() Method

We then customize the safeAttributes() method to specify which attributes can be mas-
sively assigned.

public function safeAttributes()

{
return array(’author’, ’email’, ’url’, ’content’, ’verifyCode’);

}

This also indicates that the comment form would consist of fields to collect the information
about author, email, URL, content and verification code.

4.1.3 Customizing relations() Method

When we develop the ”recent comments” portlet, we need to list the most recent comments
together with their corresponding post information. Therefore, we need to customize the
relations() method to declare the relation about post.

public function relations()

{
public function relations()

{
return array(

’post’=>array(self::BELONGS TO, ’Post’, ’postId’,

’joinType’=>’INNER JOIN’),

);

}
}

Notice that the join type for the post relation is INNER JOIN. This is because a comment
has to belong to a post.

4.1.4 Customizing attributeLabels() Method

Finally, we need to customize the attributeLabels() method to declare the customized
labels for the attributes. The method returns an array consisting of name-label pairs.
When we call CHtml::activeLabel() to display an attribute label, it will first check if a
customized label is declared. If not, it will use an algorithm to generate the default label.

http://yiiframework.com/doc/api/CHtml#activeLabel

4.1 Customizing Comment Model 31

public function attributeLabels()

{
return array(

’author’=>’Name’,

’url’=>’Website’,

’content’=>’Comment’,

’verifyCode’=>’Verification Code’,

);

}

Tip: The algorithm for generating the default label is based on the attribute name.
It first breaks the name into words according to capitalization. It then changes the
first character in each word into upper case. For example, the name verifyCode

would have the default label Verify Code.

4.1.5 Customizing Saving Process

Because we want to keep the comment count in each post, when we add or delete a
comment, we need to adjust the corresponding comment count for the post. We achieve
this by overriding the afterSave() method and the afterDelete() method of the Comment

model. We also override its beforeValidate() method so that we can convert the content
from the Markdown format to HTML format and record the creation time.

protected function beforeValidate($on)

{
$parser=new CMarkdownParser;

$this->contentDisplay=$parser->safeTransform($this->content);

if($this->isNewRecord)

$this->createTime=time();

return true;

}

protected function afterSave()

{
if($this->isNewRecord && $this->status==Comment::STATUS APPROVED)

Post::model()->updateCounters(array(’commentCount’=>1), "id={$this->postId}");
}

protected function afterDelete()

{
if($this->status==Comment::STATUS APPROVED)

Post::model()->updateCounters(array(’commentCount’=>-1), "id={$this->postId}");
}

32 4. Comment Management

4.2 Creating and Displaying Comments

In this section, we implement the comment display and creation features.

4.2.1 Displaying Comments

Instead of displaying and creating comments in dividual pages, we use the post display
page. Below the post content display, we display first a list of comments belonging to that
post and then a comment creation form.

In order to display comments on the post page, we modify the actionShow() method of
PostController as follows,

public function actionShow()

{
$post=$this->loadPost();

$this->render(’show’,array(

’post’=>$post,

’comments’=>$post->comments,

));

}

Note that the expression $post->comments is valid because we have declared a comments

relation in the Post class. Evaluating this expression would trigger an implicit JOIN
database query to bring back the comments belonging to the current post. This feature
is known as lazy relational query.

We also modify the show view by appending the comment display at the end of the post
display, which we are not going to elaborate here.

4.2.2 Creating Comments

To handle comment creation, we first modify the actionShow() method of PostController

as follows,

public function actionShow()

{
$post=$this->loadPost();

$comment=$this->newComment($post);

$this->render(’show’,array(

’post’=>$post,

’comments’=>$post->comments,

’newComment’=>$comment,

));

http://www.yiiframework.com/doc/guide/database.arr

4.2 Creating and Displaying Comments 33

}

protected function newComment($post)

{
$comment=new Comment;

if(isset($ POST[’Comment’]))

{
$comment->attributes=$ POST[’Comment’];

$comment->postId=$post->id;

$comment->status=Comment::STATUS PENDING;

if(isset($ POST[’previewComment’]))

$comment->validate(’insert’);

else if(isset($ POST[’submitComment’]) && $comment->save())

{
Yii::app()->user->setFlash(’commentSubmitted’,’Thank you...’); $this->refresh();

}
}
return $comment;

}

In the above, we call the newComment() method before we render the show view. In the
newComment() method, we generate a Comment instance and check if the comment form
is submitted. The form may be submitted by clicking either the submit button or the
preview button. If the former, we try to save the comment and display a flash message.
The flash message is displayed only once, which means if we refresh the page again, it will
disappear.

We also modify the show view by appending the comment creation form:

......

<?php $this->renderPartial(’/comment/ form’,array(

’comment’=>$newComment,

’update’=>false,

)); ?>

Here we embed the comment creation form by rendering the partial view /wwwroot/

blog/protected/views/comment/ form.php. The variable $newComment is passed by the
actionShow method. Its main purpose is to store the user comment input. The vari-
able update is set as false, which indicates the comment form is being used to create a new
comment.

In order to support comment preview, we add a preview button to the comment creation
form. When the preview button is clicked, the comment preview is displayed at the
bottom. Below is the updated code of the comment form:

34 4. Comment Management

...comment form with preview button...

<?php if(isset($ POST[’previewComment’]) && !$comment->hasErrors()): ?>

<h3>Preview</h3>

<div class="comment">

<div class="author"><?php echo $comment->authorLink; ?> says:</div>

<div class="time"><?php echo date(’F j, Y \a\t h:i a’,$comment->createTime); ?></div>

<div class="content"><?php echo $comment->contentDisplay; ?></div>

</div><!-- post preview -->

<?php endif; ?>

4.3 Managing Comments

Comment management includes updating, deleting and approving comments. These op-
erations are implemented as actions in the CommentController class.

4.3.1 Updating and Deleting Comments

The code generated by yiic for updating and deleting comments remains largely un-
changed. Because we support comment preview when updating a comment, we only need
to change the actionUpdate() method of CommentController as follows,

public function actionUpdate()

{
$comment=$this->loadComment();

if(isset($ POST[’Comment’]))

{
$comment->attributes=$ POST[’Comment’];

if(isset($ POST[’previewComment’]))

$comment->validate(’update’);

else if(isset($ POST[’submitComment’]) && $comment->save())

$this->redirect(array(’post/show’,

’id’=>$comment->postId,

’#’=>’c’.$comment->id));

}

$this->render(’update’,array(’comment’=>$comment));

}

It is very similar to that in PostController.

4.3 Managing Comments 35

4.3.2 Approving Comments

When comments are newly created, they are in pending approval status and need to be
approved in order to be visible to guest users. Approving a comment is mainly about
changing the status column of the comment.

We create an actionApprove() method in CommentController as follows,

public function actionApprove()

{
if(Yii::app()->request->isPostRequest)

{
$comment=$this->loadComment();

$comment->approve();

$this->redirect(array(’post/show’,

’id’=>$comment->postId,

’#’=>’c’.$comment->id));

}
else

throw new CHttpException(500,’Invalid request...’);

}

In the above, when the approve action is invoked via a POST request, we call the approve()

method defined in the Comment model to change the status. We then redirect the user
browser to the page displaying the post that this comment belongs to.

We also modify the actionList() method of Comment to show a list of comments pending
approval.

public function actionList()

{
$criteria=new CDbCriteria;

$criteria->condition=’Comment.status=’.Comment::STATUS PENDING;

$pages=new CPagination(Comment::model()->count());

$pages->pageSize=self::PAGE SIZE;

$pages->applyLimit($criteria);

$comments=Comment::model()->with(’post’)->findAll($criteria);

$this->render(’list’,array(

’comments’=>$comments,

’pages’=>$pages,

));

}

36 4. Comment Management

In the list view, we display the detail of every comment that is pending approval. In
particular, we show an approve link button as follows,

<?php if($comment->status==Comment::STATUS PENDING): ?>

Pending approval |

<?php echo CHtml::linkButton(’Approve’, array(

’submit’=>array(’comment/approve’,’id’=>$comment->id),

)); ?> |

<?php endif; ?>

We use CHtml::linkButton() instead of CHtml::link() because the former would trigger a
POST request while the latter a GET request. It is recommended that a GET request
should not alter the data on the server. Otherwise, we face the danger that a user may
inadvertently change the server-side data several times if he refreshes the page.

http://yiiframework.com/doc/api/CHtml#linkButton
http://yiiframework.com/doc/api/CHtml#link

Chapter 5

Porlets

5.1 Creating Portlet Architecture

Features like ”the most recent comments”, ”tag cloud” are better to be implemented in
portlets. A portlet is a pluggable user interface component that renders a fragment of
HTML code. In this section, we describe how to set up the portlet architecture for our
blog application.

Based on the requirements analysis, we need four different portlets: the login portlet, the
”user menu” portlet, the ”tag cloud” portlet and the ”recent comments” portlet. These
portlets will be placed in the side bar section of every page.

5.1.1 Creating Portlet Class

We define a class named Portlet to serve as the base class for all our portlets. The base
class contains the common properties and methods shared by all portlets. For example,
it defines a title property that represents the title of a portlet; it defines how to decorate
a portlet using a framed box with colored background.

The following code shows the definition of the Portlet base class. Because a portlet often
contains both logic and presentation, we define Portlet by extending CWidget, which
means a portlet is a widget and can be embedded in a view using the widget() method.

class Portlet extends CWidget

{
public $title; // the portlet title

public $visible=true; // whether the portlet is visible

// ...other properties...

public function init()

{
if($this->visible)

{

http://en.wikipedia.org/wiki/Portlet
http://yiiframework.com/doc/api/CWidget
http://www.yiiframework.com/doc/guide/basics.view
http://yiiframework.com/doc/api/CBaseController#widget

38 5. Porlets

// render the portlet starting frame

// render the portlet title

}
}

public function run()

{
if($this->visible)

{
$this->renderContent();

// render the portlet ending frame

}
}

protected function renderContent()

{
// child class should override this method

// to render the actual body content

}
}

In the above code, the init() and run() methods are required by CWidget, which are
called automatically when the widget is being rendered in a view. Child classes of Portlet
mainly need to override the renderContent() method to generate the actual portlet body
content.

5.1.2 Customizing Page Layout

It is time for us to adjust the page layout so that we can place portlets in the side bar
section. The page layout is solely determined by the layout view file /wwwroot/blog/

protected/views/layouts/main.php. It renders the common sections (e.g. header, footer)
of different pages and embeds at an appropriate place the dynamic content that are gen-
erated by individual action views.

Our blog application will use the following layout:

<html>

<head>

......

<?php echo CHtml::cssFile(Yii::app()->baseUrl.’/css/main.css’); ?>

<title><?php echo $this->pageTitle; ?></title>

</head>

<body>

...header...

http://yiiframework.com/doc/api/CWidget

5.2 Creating User Menu Portlet 39

<div id="sidebar">

...list of portlets...

</div>

<div id="content">

<?php echo $content; ?>

</div>

...footer...

</body>

</html>

Besides customizing the layout view file, we also need to adjust the CSS file /wwwroot/

blog/css/main.css so that the overall appearance would look like what we see in the blog
demo. We will not go into details here.

5.2 Creating User Menu Portlet

In this section, we will develop our first concrete portlet - the user menu portlet which
displays a list of menu items that are only available to authenticated users. The menu
contains four items:

• Approve Comments: a hyperlink that leads to a list of comments pending approval;

• Create New Post: a hyperlink that leads to the post creation page;

• Manage Posts: a hyperlink that leads to the post management page;

• Logout: a link button that would log out the current user.

5.2.1 Creating UserMenu Class

We create the UserMenu class to represent the logic part of the user menu portlet. The
class is saved in the file /wwwroot/blog/protected/components/UserMenu.php which has the
following content:

<?php

class UserMenu extends Portlet

{
public function init()

{
$this->title=CHtml::encode(Yii::app()->user->name);

http://www.yiiframework.com/demos/blog/
http://www.yiiframework.com/demos/blog/

40 5. Porlets

parent::init();

}

protected function renderContent()

{
$this->render(’userMenu’);

}
}

The UserMenu class extends from the Portlet class that we created previously. It overrides
both the init() method and the renderContent() method of Portlet. The former sets
the portlet title to be the name of the current user; the latter generates the portlet body
content by rendering a view named userMenu.

Tip: Notice that we do not explicitly include the class file for Portlet even though
we reference it in the code. This is due to the reason we explained in the previous
section.

5.2.2 Creating userMenu View

Next, we create the userMenu view which is saved in the file /wwwroot/blog/protected/

components/views/userMenu.php:

<?php echo CHtml::link(’Approve Comments’, array(’comment/list’))

. ’ (’ . Comment::model()->pendingCommentCount . ’)’; ?>

<?php echo CHtml::link(’Create New Post’,array(’post/create’)); ?>

<?php echo CHtml::link(’Manage Posts’,array(’post/admin’)); ?>

<?php echo CHtml::linkButton(’Logout’,array(

’submit’=>’’,

’params’=>array(’command’=>’logout’),

)); ?>

Info: By default, view files for a widget should be placed under the views sub-
directory of the directory containing the widget class file. The file name must be
the same as the view name.

In the view, we call CHtml::link to create the needed hyperlinks; we also call CHtml::linkButton
to create a link button which works like a normal push button. When the button is clicked,

http://yiiframework.com/doc/api/CHtml#link
http://yiiframework.com/doc/api/CHtml#linkButton

5.2 Creating User Menu Portlet 41

it submits an implicit form to the current page with the parameter command whose value
is logout.

In order to respond to the clicking of the logout hyperlink, we need to modify the init()

method of UserMenu as follows:

public function init()

{
if(isset($ POST[’command’]) && $ POST[’command’]===’logout’)

{
Yii::app()->user->logout();

$this->controller->redirect(Yii::app()->homeUrl);

}

$this->title=CHtml::encode(Yii::app()->user->name);

parent::init();

}

In the init() method, we check if there is a command POST variable whose value is logout.
If so, we log out the current user and redirect the user browser to the application’s home
page. Note that the redirect() method will implicitly terminate the execution of the
current application.

5.2.3 Using UserMenu Portlet

It is time for us to make use of our newly completed UserMenu portlet. We modify the
layout view file /wwwroot/blog/protected/views/layouts/main.php as follows:

......

<div id="sidebar">

<?php $this->widget(’UserMenu’,array(’visible’=>!Yii::app()->user->isGuest)); ?>

</div>

......

In the above, we call the widget() method to generate and execute an instance of the
UserMenu class. Because the portlet should only be displayed to authenticated users, we
toggle its visible property according to the isGuest property of the current user.

42 5. Porlets

5.2.4 Testing UserMenu Portlet

Let’s test what we have so far.

1. Open a browser window and enter the URL http://www.example.com/blog/index.

php. Verify that there is nothing displayed in the side bar section of the page.

2. Click on the Login hyperlink and fill out the login form to login. If successful, verify
that the UserMenu portlet appears in the side bar and the portlet has the username
as its title.

3. Click on the ’Logout’ hyperlink in the UserMenu portlet. Verify that the logout action
is successful and the UserMenu portlet disappears.

5.2.5 Summary

What we have created is a portlet that is highly reusable. We can easily reuse it in a
different project with little or no modification. Moreover, the design of this portlet follows
closely the philosophy that logic and presentation should be separated. While we did not
point this out in the previous sections, such practice is used nearly everywhere in a typical
Yii application.

5.3 Creating Login Portlet

The skeleton application we created already contains a login page. In this section, we will
convert this page into a login portlet named UserLogin. The portlet will be displayed in the
side bar section of pages when the current user is a guest user who is not authenticated. If
he logs in successfully, the portlet will disappear and the previously developed user menu
portlet will show up.

5.3.1 Creating UserLogin Class

Like the user menu portlet, we create the UserLogin class to contain the logic of the user
login portlet and save it in the file /wwwroot/blog/protected/components/UserLogin.php.
The file has the following content:

<?php

class UserLogin extends Portlet

{
public $title=’Login’;

protected function renderContent()

5.3 Creating Login Portlet 43

{
$form=new LoginForm;

if(isset($ POST[’LoginForm’]))

{
$form->attributes=$ POST[’LoginForm’];

if($form->validate())

$this->controller->refresh();

}
$this->render(’userLogin’,array(’form’=>$form));

}
}

The code in the renderContent()method is copied from the actionLogin() method of
SiteController that we generated at the beginning using the yiic tool. We mainly change
the render() method call by rendering a view named userLogin. Notice also that we create
an object of the LoginForm class in this method. The class represents the user input that we
collect from the login form. It is in the file /wwwroot/blog/protected/models/LoginForm.

php and is generated by the yiic tool when we create the skeleton application.

5.3.2 Creating userLogin View

The content of the userLogin view also comes largely from the login view for the SiteController’s
login action. The view is saved in the file /wwwroot/blog/protected/components/views/

loginUser.php and has the following content:

<?php echo CHtml::form(); ?>

<div class="row">

<?php echo CHtml::activeLabel($form,’username’); ?>

<?php echo CHtml::activeTextField($form,’username’) ?>

<?php echo CHtml::error($form,’username’); ?>

</div>

<div class="row">

<?php echo CHtml::activeLabel($form,’password’); ?>

<?php echo CHtml::activePasswordField($form,’password’) ?>

<?php echo CHtml::error($form,’password’); ?>

</div>

<div class="row">

<?php echo CHtml::activeCheckBox($form,’rememberMe’); ?>

<?php echo CHtml::label(’Remember me next time’,CHtml::getActiveId($form,’rememberMe’)); ?>

</div>

<div class="row">

<?php echo CHtml::submitButton(’Login’); ?>

<p class="hint">You may login with demo/demo</p>

</div>

44 5. Porlets

</form>

In the login form, we display a username text field and a password field. We also display
a check box indicating whether the user login status should be remembered even if the
browser is closed. The view has a local variable named $form which comes from the data
passed to the render() method call in UserLogin::renderContent().

Because LoginForm data model contains validation rules (like in the Post model), when a
user submits the form, the model will perform data validation. If there is any validation
error, the form will display it next to the incorrect input field via CHtml::error().

5.3.3 Using UserLogin Portlet

We use UserLogin like we do with UserMenu by modifying the layout file /wwwroot/blog/

protected/views/layouts/main.php as follows,

......

<div id="sidebar">

<?php $this->widget(’UserLogin’,array(’visible’=>Yii::app()->user->isGuest)); ?>

<?php $this->widget(’UserMenu’,array(’visible’=>!Yii::app()->user->isGuest)); ?>

</div>

......

Notice that UserLogin is visible only when the current user is a guest, which is contrary
to UserMenu.

5.3.4 Testing UserLogin Portlet

To test the UserLogin portlet, follow the steps below:

1. Access the URL http://www.example.com/blog/index.php. If the current user is not
logged in, we should be able to see the UserLogin portlet.

2. Without entering anything in the login form, if we click the Login button, we should
see error messages.

3. Try logging in with username demo and password demo. The current page will be
refreshed, the UserLogin portlet disappears, and the UserMenu portlet appears.

4. Click on the Logout menu item in the UserMenu portlet, we should see that the
UserMenu portlet disappears while the UserLogin portlet appears again.

http://yiiframework.com/doc/api/CHtml#error

5.4 Creating Tag Cloud Portlet 45

5.3.5 Summary

The UserLogin portlet is a typical example that follows the MVC design pattern. It uses
the LoginForm model to represent the data and business rules; it uses the userLogin view
to generate user interface; and it uses the UserLogin class (a mini controller) to coordinate
the model and the view.

5.4 Creating Tag Cloud Portlet

Tag cloud displays a list of post tags with visual decorations hinting the popularity of each
individual tag.

5.4.1 Creating TagCloud Class

We create the TagCloud class in the file /wwwroot/blog/protected/components/TagCloud.

php. The file has the following content:

<?php

class TagCloud extends Portlet

{
public $title=’Tags’;

public function getTagWeights()

{
return Tag::model()->findTagWeights();

}

protected function renderContent()

{
$this->render(’tagCloud’);

}
}

In the above we invoke the findTagWeights method which is defined in the Tag class. The
method returns a list of tags with their relative frequency weights. If a tag is associated
with more posts, it receives higher weights. We will use the weights to control how the
tags are displayed.

5.4.2 Creating tagCloud View

The tagCloud view is saved in the file /wwwroot/blog/protected/components/views/tagCloud.
php. For each tag returned by TagCloud::getTagWeights(), it displays a hyperlink which
would lead to the page listing the posts with that tag. The font size of the link is deter-

http://en.wikipedia.org/wiki/Tag_cloud

46 5. Porlets

mined according to the weight value of the tag. The higher the weight, the bigger the fone
size.

5.4.3 Using TagCloud Portlet

Usage of the TagCloud portlet is very simple. We modify the layout file /wwwroot/blog/

protected/views/layouts/main.php as follows,

......

<div id="sidebar">

<?php $this->widget(’UserLogin’,array(’visible’=>Yii::app()->user->isGuest)); ?>

<?php $this->widget(’UserMenu’,array(’visible’=>!Yii::app()->user->isGuest)); ?>

<?php $this->widget(’TagCloud’); ?>

</div>

......

5.5 Creating Recent Comments Portlet

In this section, we create the last portlet that displays a list of comments recently pub-
lished.

5.5.1 Creating RecentComments Class

We create the RecentComments class in the file /wwwroot/blog/protected/components/RecentComments.
php. The file has the following content:

<?php

class RecentComments extends Portlet

{
public $title=’Recent Comments’;

public function getRecentComments()

{
return Comment::model()->findRecentComments();

}

protected function renderContent()

{
$this->render(’recentComments’);

}
}

5.5 Creating Recent Comments Portlet 47

In the above we invoke the findRecentComments method which is defined in the Comment

class as follows,

class Comment extends CActiveRecord

{
......

public function findRecentComments($limit=10)

{
$criteria=array(

’condition’=>’Comment.status=’.self::STATUS APPROVED,

’order’=>’Comment.createTime DESC’,

’limit’=>$limit,

);

return $this->with(’post’)->findAll($criteria);

}
}

5.5.2 Creating recentComments View

The recentComments view is saved in the file /wwwroot/blog/protected/components/views/

recentComments.php. The view simply displays every comment returned by the RecentComments:
:getRecentComments() method.

5.5.3 Using RecentComments Portlet

We modify the layout file /wwwroot/blog/protected/views/layouts/main.php to embed
this last portlet,

......

<div id="sidebar">

<?php $this->widget(’UserLogin’,array(’visible’=>Yii::app()->user->isGuest)); ?>

<?php $this->widget(’UserMenu’,array(’visible’=>!Yii::app()->user->isGuest)); ?>

<?php $this->widget(’TagCloud’); ?>

<?php $this->widget(’RecentComments’); ?>

</div>

......

48 5. Porlets

Chapter 6

Final Work

6.1 Beautifying URLs

The URLs linking various pages of our blog application currently look ugly. For example,
the URL for the page showing a post looks like the following:

/index.php?r=post/show&id=1

In this section, we describe how to beautifying these URLs and make them SEO-friendly.
Our goal is to be able to use the following URLs in the application:

• /index.php/tag/yii: leads to the page showing a list of posts with tag yii;

• /index.php/posts: leads to the page showing the latest posts;

• /index.php/post/1: leads to the page showing the detail of the post with ID 1;

• /index.php/post/update/1: leads to the page that allows updating the post with ID
1.

To achieve our goal, we modify the application configuration as follows,

return array(

......

’components’=>array(

......

’urlManager’=>array(

’urlFormat’=>’path’,

’rules’=>array(

’tag/<tag>’=>’post/list’,

’posts’=>’post/list’,

’post/<id:\d+>’=>’post/show’,

http://www.yiiframework.com/doc/guide/basics.application#application-configuration

50 6. Final Work

’post/update/<id:\d+>’=>’post/update’,
),

),

),

);

In the above, we configure the urlManager component by setting its urlFormat property
to be path and adding a set of rules.

The rules are used by urlManager to parse and create the URLs in the desired format. For
example, the first rule says that if a URL /index.php/tag/yii is requested, the urlManager

component should be responsible to dispatch the request to the route post/list and
generate a tag GET parameter with the value yii. On the other hand, when creating a
URL with the route post/list and parameter tag, the urlManager component will also use
this rule to generate the desired URL /index.php/tag/yii. For this reason, we say that
urlManager is a two-way URL manager.

The urlManager component can further beautify our URLs, such as hiding index.php in
the URLs, appending suffix like .html to the URLs. We can obtain these features easily
by configuring various properties of urlManager in the application configuration. For more
details, please refer to the Guide.

6.2 Logging Errors

A production Web application often needs sophisticated logging for various events. In our
blog application, we would like to log the errors occurring when it is being used. Such
errors could be programming mistakes or users’ misuage of the system. Logging these
errors will help us to improve the blog application.

We enable the error logging by modifying the application configuration as follows,

return array(

’preload’=>array(’log’),

......

’components’=>array(

’log’=>array(

’class’=>’CLogRouter’,

’routes’=>array(

array(

’class’=>’CFileLogRoute’,

’levels’=>’error, warning’,

),

http://www.yiiframework.com/doc/guide/topics.url
http://www.yiiframework.com/doc/guide/basics.controller#route
http://www.yiiframework.com/doc/guide/topics.url
http://www.yiiframework.com/doc/guide/basics.application#application-configuration

6.3 Customizing Error Display 51

),

),

......

),

);

With the above configuration, if an error or warning occurs, detailed information will be
logged and saved in a file located under the directory /wwwroot/blog/protected/runtime.

The log component offers more advanced features, such as sending log messages to a list
of email addresses, displaying log messages in JavaScript console window, etc. For more
details, please refer to the Guide.

6.3 Customizing Error Display

Our blog application is using the templates provided by Yii to display various errors.
Because the style and wording are different from what we want, we would like to customize
these templates. To do so, we create a set of view files under the directory /wwwroot/blog/

protected/views/system.

We first create a file named error.php. This is the default view that will be used to display
all kinds of errors if a more specific error view file is not available. Because this view file is
used when an error occurs, it should not contain very complex PHP logic that may cause
further errors. Note also that error view files do not use layout. Therefore, each view file
should have complete page display.

We also create a file named error401.php to display 401 (unauthenticated) HTTP errors,
and a file named error404.php to display 404 (page not found) HTTP errors.

To learn more details about the naming of these error view files, please refer to the Guide.

6.4 Final Tune-up and Deployment

We are close to finish our blog application. Before deployment, we would like to do some
tune-ups.

6.4.1 Changing Home Page

We change to use the post list page as the home page. We modify the application config-
uration as follows,

return array(

http://www.yiiframework.com/doc/guide/topics.logging
http://www.yiiframework.com/doc/guide/topics.error#displaying-errors
http://www.yiiframework.com/doc/guide/basics.application#application-configuration
http://www.yiiframework.com/doc/guide/basics.application#application-configuration

52 6. Final Work

......

’defaultController’=>’post’,

......

);

Tip: Because PostController already declares list to be its default action, when
we access the home page of the application, we will see the result generated by the
list action of the post controller.

6.4.2 Enabling Schema Caching

Because ActiveRecord relies on the metadata about tables to determine the column infor-
mation, it takes time to read the metadata and analyze it. This may not be a problem
during development stage, but for an application running in production mode, it is a total
waste of time if the database schema does not change. Therefore, we should enable the
schema caching by modifying the application configuration as follows,

return array(

......

’components’=>array(

......

’cache’=>array(

’class’=>’CDbCache’,

),

’db’=>array(

’class’=>’system.db.CDbConnection’,

’connectionString’=>’sqlite:/wwwroot/blog/protected/data/blog.db’,

’schemaCachingDuration’=>3600,

),

),

);

In the above, we first add a cache component which uses a default SQLite database as the
caching storage. If our server is equipped with other caching extensions, such as APC,
we could change to use them as well. We also modify the db component by setting its
schemaCachingDuration property to be 3600, which means the parsed database schema
data can remain valid in cache for 3600 seconds.

6.4.3 Disabling Debugging Mode

We modify the entry script file /wwwroot/blog/index.php by removing the line defining
the constant YII DEBUG. This constant is useful during development stage because it allows

http://yiiframework.com/doc/api/CDbConnection#schemaCachingDuration

6.5 Future Enhancements 53

Yii to display more debugging information when an error occurs. However, when the
application is running in production mode, displaying debugging information is not a
good idea because it may contain sensitive information such as where the script file is
located, and the content in the file, etc.

6.4.4 Deploying the Application

The final deployment process manly involves copying the directory /wwwroot/blog to the
target directory. The following checklist shows every needed step:

1. Install Yii in the target place if it is not available;

2. Copy the entire directory /wwwroot/blog to the target place;

3. Edit the entry script file index.php by pointing the $yii variable to the new Yii
bootstrap file;

4. Edit the file protected/yiic.php by setting the $yiic variable to be the new Yii
yiic.php file;

5. Change the permission of the directories assets and protected/runtime so that they
are writable by the Web server process.

6.5 Future Enhancements

6.5.1 Using a Theme

Without writing any code, our blog application is already themeable. To use a theme,
we mainly need to develop the theme by writing customized view files in the theme. For
example, to use a theme named classic that uses a different page layout, we would create
a layout view file /wwwroot/blog/themes/classic/views/layouts/main.php. We also need
to change the application configuration to indicate our choice of the classic theme:

return array(

......

’theme’=>’classic’,

......

);

6.5.2 Internationalization

We may also internationalize our blog application so that its pages can be displayed in
different languages. This mainly involves efforts in two aspects.

http://www.yiiframework.com/doc/guide/topics.theming

54 6. Final Work

First, we may create view files in different languages. For example, for the list page
of PostController, we can create a view file /wwwroot/blog/protected/views/post/zh cn/

list.php. When the application is configured to use simplified Chinese (the language code
is zh cn), Yii will automatically use this new view file instead of the original one.

Second, we may create message translations for those messages generated by code. The
message translations should be saved as files under the directory /wwwroot/blog/protected/

messages. We also need to modify the code where we use text strings by enclosing them
in the method call Yii::t().

For more details about internationalization, please refer to the Guide.

6.5.3 Improving Performance with Cache

While the Yii framework itself is very efficient, it is not necessarily true that an application
written in Yii efficient. There are several places in our blog application that we can improve
the performance. For example, the tag clould portlet could be one of the performance
bottlenecks because it involves complex database query and PHP logic.

We can make use of the sophisticated caching feature provided by Yii to improve the
performance. One of the most useful components in Yii is COutputCache, which caches a
fragment of page display so that the underlying code generating the fragment does not need
to be executed for every request. For example, in the layout file /wwwroot/blog/protected/

views/layouts/main.php, we can enclose the tag cloud portlet with COutputCache:

<?php if($this->beginCache(’tagCloud’, array(’duration’=>3600))) { ?>

<?php $this->widget(’TagCloud’); ?>

<?php $this->endCache(); } ?>

With the above code, the tag cloud display will be served from cache instead of being
generated on-the-fly for every request. The cached content will remain valid in cache for
3600 seconds.

6.5.4 Adding New Features

Our blog application only has very basic functionalities. To become a complete blog
system, more features are needed, for example, calendar portlet, email notifications, post
categorization, archived post portlet, and so on. We will leave the implementation of thse
features to interested readers.

http://www.yiiframework.com/doc/guide/topics.i18n
http://www.yiiframework.com/performance/
http://www.yiiframework.com/doc/guide/caching.overview
http://yiiframework.com/doc/api/COutputCache
http://yiiframework.com/doc/api/COutputCache

	Contents
	License
	Getting Started
	Building a Blog System using Yii
	Testdriving with Yii
	Installing Yii
	Creating Skeleton Application
	Application Workflow

	Requirements Analysis
	Overall Design

	Initial Prototyping
	Setting Up Database
	Creating Database
	Establishing Database Connection

	Scaffolding
	Authenticating User
	Summary

	Post Management
	Customizing Post Model
	Customizing rules() Method
	Customizing safeAttributes() Method
	Customizing relations() Method
	Representing Status in Text

	Creating and Updating Posts
	Customizing Access Control
	Customizing create and update Operations
	Implementing Preview Feature

	Displaying Posts
	Customizing show Operation
	Customizing list Operation

	Managing Posts
	Listing Posts in Tabular View
	Deleting Posts

	Comment Management
	Customizing Comment Model
	Customizing rules() Method
	Customizing safeAttributes() Method
	Customizing relations() Method
	Customizing attributeLabels() Method
	Customizing Saving Process

	Creating and Displaying Comments
	Displaying Comments
	Creating Comments

	Managing Comments
	Updating and Deleting Comments
	Approving Comments

	Porlets
	Creating Portlet Architecture
	Creating Portlet Class
	Customizing Page Layout

	Creating User Menu Portlet
	Creating UserMenu Class
	Creating userMenu View
	Using UserMenu Portlet
	Testing UserMenu Portlet
	Summary

	Creating Login Portlet
	Creating UserLogin Class
	Creating userLogin View
	Using UserLogin Portlet
	Testing UserLogin Portlet
	Summary

	Creating Tag Cloud Portlet
	Creating TagCloud Class
	Creating tagCloud View
	Using TagCloud Portlet

	Creating Recent Comments Portlet
	Creating RecentComments Class
	Creating recentComments View
	Using RecentComments Portlet

	Final Work
	Beautifying URLs
	Logging Errors
	Customizing Error Display
	Final Tune-up and Deployment
	Changing Home Page
	Enabling Schema Caching
	Disabling Debugging Mode
	Deploying the Application

	Future Enhancements
	Using a Theme
	Internationalization
	Improving Performance with Cache
	Adding New Features

